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A bis-double-decker complex has been assembled from the nickel
bisdithiolene complex [Ni(S2C2Me2)2]1-/2- and two [Cp*Fe]+ units
(Cp* ) C5Me5). The complex, [(η5-Cp*-Fe-µ-η5,η5-((S2C2Me2)2Ni)Fe-
η5-Cp*]n (1n), was isolated in two charge states (n ) 0, 1). The
structure of 1+ was confirmed by X-ray crystallography for 1+PF6

-

and 1+BF4
-, and it shows the nickel bisdithiolene units π-donating

to iron centers. Both salts crystallize in a centrosymmetric space
group (center of inversion at nickel). Computational (density
functional theory) data indicate a highly delocalized spin density
for 1+. The reaction of 1 with 1 or 2 equiv of HBF4 leads to
oxidation to form 1+ or 12+, respectively. On an electrochemical
time scale, reversibility is observed for the redox series 1/1+/12+,
with an additional slower step for oxidation of 12+.

Although transition-metal bisdithiolene complexes have
been studied for decades, new properties and novel applica-
tions continue to be discovered. Bisdithiolene complexes
show rich thermal1 and photochemical2 behavior. In com-
paratively recent work, bisdithiolenes have been considered
for sensing3 and purification4 applications and have been
incorporated into a variety of magnetic and conducting5

materials. The unique chemical and spectroscopic properties
of metal dithiolenes are related to their delocalized electronic
structures. New synthetic strategies for the construction of
dithiolene-derived supramolecular architectures, with

extensive electronic conjugation, should lead to new proper-
ties and, likely, to new applications.

Using bisdithiolene complexes as ligands for other metal
centers is a promising concept for the synthesis of new materials.
This approach may involve appending specialized donating
substituents to the dithiolene ligands (i.e., at the R groups in
Figure 1).6 Alternatively, the dithiolene ligands themselves can
engage in bonding with electrophilic centers, even in the absence
of ligand-appended donor groups.7 The prototypical metal
bisdithiolenes [M(S2C2R2)2]n (M ) Ni, Pd, Pt; R ) various
substituents; n ) 0, -1, -2) can, in principle, act as σ- or
π-donor ligands. In the case of σ donation,8 the dithiolene ligand
uses electrons localized on one sulfur atom (η1) to form a bond
to a second metal (Figure 1; or other electrophiles, e.g., alkyl
cations), whereas in π donation, two or more contiguous atoms
of the dithiolene MS2C2 unit are involved in bonding (ηx with
x > 1; e.g., η4 or η5; Figure 1).

π Donation of dithiolenes is quite rare. Typical examples
involve homometallic complexes of ruthenium9 or, less

* To whom correspondence should be addressed. E-mail: ulrich.
fekl@utoronto.ca.

† University of Toronto Mississauga.
‡ University of Toronto, X-ray Crystallography.

(1) Wang, K. Prog. Inorg. Chem. 2004, 52, 267.
(2) Cummings, S. D.; Eisenberg, R. Prog. Inorg. Chem. 2004, 52, 315.
(3) Pilato, R. S.; Van Houten, K. A. Prog. Inorg. Chem. 2004, 52, 369.
(4) (a) Wang, K.; Stiefel, E. I. Science 2001, 291, 106. (b) Harrison, D. J.;

Nguyen, N.; Lough, A. J.; Fekl, U. J. Am. Chem. Soc. 2006, 128,
11026.

(5) (a) Takahashi, K.; Cui, H.-B.; Okano, Y.; Kobayashi, H.; Mori, H.;
Tajima, H.; Einaga, Y.; Sato, O. J. Am. Chem. Soc. 2008, 130, 6688.
(b) Faulmann, C.; Cassoux, P. Prog. Inorg. Chem. 2004, 52, 399.

(6) Examples: (a) Arumugam, K.; Yu, R.; Villagrán, D.; Gray, T. G.;
Mague, J. T.; Donahue, J. P. Inorg. Chem. 2008, 47, 5570. (b) Kubo,
K.; Nakao, A.; Yamamoto, H. M.; Kato, R. J. Am. Chem. Soc. 2006,
128, 12358. (c) Mueller-Westerhoff, U. T.; Sanders, R. W. Organo-
metallics 2003, 22, 4778.

(7) Alvarez, S.; Vicente, R.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107,
6253.

(8) Examples: (a) Maiti, B. K.; Pal, K.; Sarkar, S. Dalton Trans. 2008,
1003. (b) Adams, H.; Gardner, H. C.; McRoy, R. A.; Morris, M. J.;
Motley, J. C.; Torker, S. Inorg. Chem. 2006, 45, 10967. (c)
McLauchlan, C. C.; Ibers, J. A. Inorg. Chem. 2001, 40, 1809. (d)
Breitzer, J. G.; Rauchfuss, T. B. Polyhedron 2000, 19, 1283. (e)
Roesselet, K.; Doan, K. E.; Johnson, S. D.; Nicholls, P.; Miessler,
G. L.; Kroeker, R.; Wheeler, S. H. Organometallics 1987, 6, 480.

(9) (a) Kuwata, S.; Andou, M.; Hashizume, K.; Mizobe, Y.; Hidai, M.
Organometallics 1998, 17, 3429. (b) Rauchfuss, T. B.; Rodgers,
D. P. S.; Wilson, S. R. J. Am. Chem. Soc. 1986, 108, 3114.

Figure 1

Inorg. Chem. 2008, 47, 10199-10201

10.1021/ic801487f CCC: $40.75  2008 American Chemical Society Inorganic Chemistry, Vol. 47, No. 22, 2008 10199
Published on Web 10/14/2008



commonly, iron10 or manganese,11 as well as some hetero-
metallic cases.12 Sandwich compounds of nickel bisdithi-
olenes, with a nickel dithiolene chelate ring in an η5

π-donating mode, have not been demonstrated so far. A
report from 2000,13 involving the monoanionic nickel
bisdithiolene [Ni(S2C6H4)2]-, proposed that the arene groups
of the ligands, rather than the dithiolene NiS2C2 rings, are
used for bonding to [Cp*Ru]+ fragments (Figure 2A; Cp*
) pentamethylcyclopentadienyl). In fact, no structurally
characterized example exists for the general nickel bis-
double-decker structure shown in Figure 2B, and isoelec-
tronic palladium and platinum complexes are also unknown.
Here we describe the synthesis and redox reactivity of a novel
bis-double-decker complex in which a nickel bisdithiolene
complex utilizes its two chelate rings as π donors to
[Cp*Fe]+ units.

The reaction of magenta-colored monoanionic nickel
bisdithiolene sodium salt Na[Ni(S2C2Me2)2]14 with 2 equiv
of purple [Cp*Fe(NCMe)3](PF6)15 in acetonitrile forms the
brown-green bis-double-decker complex [η5-Cp*-Fe-µ-η5,η5-
((S2C2Me2)2Ni)-Fe-η5-Cp*](PF6) (1+PF6

-, see Figure 2B with
M ) Fe, R ) R′ ) CH3, and n ) 1) in 56% yield. Compound
1+ has an intense near-infrared (NIR) band at 1700 nm
(UV-vis-NIR data discussed in the Supporting Informa-
tion). The neutral analogue, compound 1, is also accessible:
the combination of the dianionic bisdithiolene sodium salt
Na2[Ni(S2C2Me2)2]14 (dark yellow) with 2 equiv of
[Cp*Fe(NCMe)3](PF6)15 gives green 1 (58%). The 1H NMR
spectrum of diamagnetic 1 shows all dithiolene methyl
groups to be equivalent, consistent with the structure shown.
The iron centers in 1 satisfy the 18-valence-electron rule:
[Ni(S2C2Me2)2]2- is best described as NiII with two enedithi-
olate ligands,16 and the π system of each enedithiolate unit

should act as a 6-electron donor, similar to the cyclopenta-
dienyl anion.

Crystals of 1+PF6
- were obtained by diffusion of diethyl

ether into a dichloromethane solution of 1+PF6
-, and the

results from a single-crystal X-ray structure determination17

are shown in Figure 3A. The dithiolene units are almost
planar. Deviations from the best plane are smaller than 0.06
Å and are caused by a very slight (ca. 8°) bending along the
S-S axes. The pentamethylcyclopentadienyl plane and the
nickel dithiolene plane are oriented in a parallel fashion, and
the deviation from a perfectly parallel arrangement is only
4° (see the legend of Figure 3). Furthermore, the iron center
resides almost directly between the center of the cyclopen-
tadienyl ring and the center of the nickel dithiolene
(C1-C2-S1-S2-Ni1) unit. Irrespective of the nature and
strength of the iron-nickel interaction (the 2.6791 Å
interatomic distance is well within the bonding distance18),
thestructuraldata19demonstrate that theC1-C2-S1-S2-Ni1
rings coordinate to the iron centers in an η5 fashion.
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Figure 2

Figure 3. Structures of 1+ (hydrogen atoms omitted). (A) Crystal structure
of 1+PF6

- (PF6
- counterion not shown), using 30% thermal ellipsoids. Ni1

resides on a crystallographic center of inversion. Selected distances and
angles (Å and deg): Ni1-S1, 2.164(1); Ni1-S2, 2.163(1); C1-C2, 1.394(6);
S1-Ni1-S2, 90.02(4); Fe1-S1, 2.266(1); Fe1-S2, 2.267(1); Fe1-C1,
2.072(4); Fe1-C2, 2.069(4); Fe1-Ni1, 2.6791(6); Fe1-C5, 2.090(4);
Fe1-C6, 2.063(4); Fe1-C7, 2.075(4); Fe1-C8, 2.071(4); Fe1-C9,
2.088(4); Fe1-centroid (C5-9), 1.683(4); Fe1-centroid (Ni1,S1,S2,C1,C2),
1.657(3); centroid-Fe1-centroid, 175.9(1); dihedral angle Ni1-S1-S2 vs
C1-C2-S1-S2, 7.9(1); dihedral Ni1-S1-S2-C1-C2 vs C5-C6-
C7-C8-C9, 4.1(1). 1+ in 1+BF4

- is extremely similar (Supporting
Information). (B) Structure from UBLYP (SDD basis) geometry optimiza-
tion. A spin isodensity surface corresponding to a 0.0013 value is
superimposed.
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Concerning the electronic structure of the odd-electron
species 1+, it is relevant that oxidation of the bridging
unit, [Ni(S2C2Me2)2]2-, without the [FeCp*]+ groups,
would lead to removal of one electron from an essentially
ligand-based highest occupied molecular orbital (delocal-
ized over both ligands, with a small coefficient at
nickel).1,16 It appears likely that the unpaired electron in
1+ is delocalized over the whole molecule, including the
dithiolene groups. Complex 1+, in the crystallographically
characterized 1+PF6

-, has a center of inversion (point
group Ci), rendering both iron fragments equivalent. The
core [iron-nickel bisdithiolene-iron] approximates even
higher (C2h) symmetry. The presence of an inversion center
in the structure of 1+PF6

- seems to provide evidence
against a localized FeII/FeIII description, but it cannot be
regarded as conclusive proof of a truly delocalized ground
state. Crystallographic disorder and/or rapid intramolecular
electron transfer between the iron centers in a FeII/FeIII

localized state could also account for the center of
inversion observed for 1+PF6

-. However, there is no
evidence for disorder caused by a valence-trapped FeII/
FeIII state in the structure of 1+PF6

- (i.e., no abnormalities
observed for the iron or Cp* carbon ellipsoids). We
crystallographically characterized 1+ as its BF4

- salt as
well17 (see the Supporting Information) and obtained a
structure for 1+ that is virtually identical to its structure
in 1+PF6

-: again, the nickel atom lies on a center of
inversion, and iron and Cp* ellipsoids show no signs of
disorder. Thus, experimental evidence indicates that 1+

is either truly centrosymmetric, with a delocalized elec-
tronic ground state, or, if the electronic structure is
localized as FeII/FeIII, electron transfer between the iron
atoms is very facile and occurs with minimal structural
reorganization.20 Theory supports a truly delocalized
ground state: a spin-unrestricted DFT (UBLYP) computa-
tion was performed for 1+. A geometry optimization
(Gaussian03,21 LANL2MB basis), without symmetry
imposed, converges toward Ci symmetry. A calculation
using a larger basis set (SDD, with added polarization
functions on the sulfur atoms) predicts Ci symmetry
(closely approximating C2h) and yields structural param-
eters very similar to those seen in the crystal structures
of 1+. The calculated structure of 1+ is shown in Figure
3B, along with the computed spin density, which is
delocalized over both iron centers with significant spin
contributions on the nickel bisdithiolene unit. Using a
simplified model (methyl groups replaced with hydrogen
atoms) of 1+, an unsymmetrical valence-trapped state was
enforced by geometry optimization in the presence of a
simulated electric field; when the field was removed, the
structure reverted back to the fully delocalized state (see
the Supporting Information for details).

Complex 1 is rapidly22 oxidized by 1 equiv of HBF4 to
1+; monocationic 1+ can be further oxidized to 12+ by
treatment with another 1 equiv of HBF4 (in dichloromethane).
Dicationic 12+ can also be generated by oxidation of 1+ with
1 equiv of ferrocenium hexafluorophosphate. Cyclic volta-
mmetry on 1+PF6

- (Figure 4) reveals three one-electron-
transfer events (see the Supporting Information). Rapid and
reversible electron transfer is observed between 1/1+/12+

(peak assignments in Figure 423). Oxidation of 12+ is less
facile and requires a relatively slow scan rate (100 mV/s or
slower), indicating significant structural rearrangement. In
Figure 4, the oxidation product is assigned as “13+”, but
partial loss of [Cp*Fe]+ in this highly oxidized species
appears possible. However, the oxidation of 12+ is fully
reversible at slower (e100 mV/s) scan rates.

In summary, we have synthesized a trimetallic bis-double-
decker complex with a new structural motif in which two
dithiolene ligands act as π donors to iron centers. Structural
and computational data indicate a highly delocalized elec-
tronic structure for 1+. Consistent with delocalized frontier
orbitals, compounds 1n exhibit rich redox reactivity, as shown
by cyclic voltammetry and by oxidation of 1 and 1+ with
H+. These highly conjugated, redox-active species will be
investigated for potential applications.
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Figure 4. Cyclic voltammogram for 1+PF6
- (∼1 mM in acetonitrile, 0.1

M NBu4PF6 as the supporting electrolyte, scan rate ) 100 mV/s). Potentials
are relative to the ferrocene/ferrocenium couple. See the text for a comment
on “13+” and see the Supporting Information for experimental details.
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